"Consumers Have Always Paid" Carbon Pricing and The Transmission Subsidy

Steven Stoft stoft.com

October 7, 2009

University of Calgary, School of Public Policy

Outline

- 1. What to do about carbon
- 2. "Reasons" to build transmission
- 3. Why consumers shouldn't pay
- 4. Subsidizing upstream generation

What to Do about Carbon

- Three climate-related market failures:
 - A zero price for carbon
 - 2. Consumers ignore future energy costs
 - Insufficient reward for advanced research
- Transmission policy needs to address only #1.
 So,
 - Use the "right" carbon price, and
 - plan transmission optimally.
 - That's all (but that's hard enough).

How to Minimize *Total* Cost

- When planning transmission, include
 - the cost of carbon for coal & gas. and
 - the unsubsidized cost of wind.
- Plan wires for jointly optimized wires and gens
- Charge generators for the wires they use.
- Then they will lobby for reasonable upgrades.
 (This is a check on the planning.)

Mistakes to Avoid

- Don't subsidize transmission to coal plants.
- Don't subsidize transmission to wind turbines.
 (Wind is #1 example of desirable congestion.)
- Don't ignore freak wind outages (see TX)
- Don't forget the option value of waiting—especially with increased long-term uncertainty due to changing carbon policy.

What's Happening Instead?

- Except for today's discussion paper, there's little talk of cost minimization, let alone including the cost of carbon.
- So, what's driving transmission policy?

Poor Reasons to Build Wires

- 1. Because zero congestion is the law in Alberta.
- 2. To keep the lights on.
 - Generators can do that, and are faster to build.
 - Congestion is not a sign of unreliability.
- 3. Economic benefits for upstream generators.
 - Not cost minimization.

More Reasons to Build Wires

- 4. Build to reduce market power.
 - This works. See slide #9.
- 5. Build to minimize cost.
 - But, see slide #10.
- 6. Build so a one-price market will almost work, and prices will almost be simpler to calculate.
 - But see slide #11.

Build to Reduce Market Power

- Competition from Edmonton will reduce market power in Calgary.
- But, ... are their cheaper approaches?
 - Yes, change the market rules.
- Need to reduce AESO market power and generator market power together.
- But good design is difficult.

Build to Minimize Cost

But that's against the law.

Cost	Far Gen	Near Gen
Fuel:	18 \$/MWh	30 \$/MWh
Generation:	30 \$/MWh	20 \$/MWh
Transmission:	10 \$/MWh	2 \$/MWh
Total:	58 \$/MWh	52 \$/MWh

- A regulated vertically-integrated utility picks Near Gen.
- A competitive generator with transmission paid for by consumers picks Far Gen — the wrong choice.

To Maximize Transmission

- One Price
 - □ No locational signal from energy market
 - \square No congestion \square too many wires.
- Consumers pay (or postage-stamp rates)
 - □ No locational signal from wires market.
- Both together
 - □ No locational signal at all + excess capacity.
 - ☐ Subsidies for coal and wind. Wasted money.

The End